Processing math: 100%
VolumeRendering

Absorption

Absorption Coefficient | | Numerical Integration

Absorption on a line segment with length Δt:

For a constant absorption coefficient μ:

μ=const

Exponential attenuation on the line segment:

I=I0eμΔt


For piecewise linear absorption coeffizient μ(t) between two points p0 and p1 with the scalar value s0 and s1:

μ(t)=(1t)TFA(s0)+tTFA(s1)
μ(t)=(1t)s0μA+ts1μA
μ(t)=((1t)s0+ts1)μA

Attenuation approximation by averaging the coefficients ˆμ=μ0+μ12:

I=I0es0+s12μAΔt


For an arbitrary absorption coefficient μ(t) on the line segment p(t)=(1t)p0+tp1:

s=f(p(t))
μ(t)=TFA(t)=s(t)μA

Attenuation is determined by the integral of coefficients 1t=0μ(t)dt:

I=I0e1t=0μ(t)dt

Problem: no closed form of the line integral!


Numerical integration on the line segment:

I=I0eni=0μ(in1)Δt
I=I0ni=0eμ(in1)Δt

Single step of numerical integration:

I=Ieμ(t)Δt


Absorption Coefficient | | Numerical Integration

Options: